
[Gill & Chandra, 5(2): April-June, 2015]                                                                                                 ISSN: 2277-5528 

                                                                                                                                     Impact Factor: 3.145 (SIJF) 

Int. J. of Engg. Sci. & Mgmt. (IJESM), Vol. 5, Issue 2: April-June: 2015, 112-120 

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES                     

& MANAGEMENT 

Arbitrary amplitude ion acoustic waves in finite temperature Fermi plasma 

Ravneet Kaur Gill
1
, Swarniv Chandra

2* 

1,2
Department of Physics, Techno India University, Kolkata-700091, India 
2
Department of Physics, Jadavpur University, Kolkata-700032, India 

1
rvnt111@gmail.com, 

2*
swarniv147@gmail.com

 

Abstract 
Arbitrary amplitude solitary waves are investigated in finite temperature quantum plasma containing electrons and ions by employing 

Sagdeev’s pseudopotential technique. The effect of electron degeneracy, ion temperature, quantum diffraction has important 

contribution in determining the nature of pseudopotential well. They also determine the formation and properties of ion acoustic 

waves in this two-component electron-ion dense quantum plasma.  
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I. INTRODUCTION 

In the recent years, quantum plasma has been a major field 

of interest. It has applications ranging from space plasmas 

(white dwarf, neutron stars etc.) [1] to laboratory produced 

plasmas. It has found applications in biophotonics [2], 

microelectronics [3], carbon nanotubes [4], laser-solid 

interactions [5], metal nanostructures [6], etc. Therefore, the 

surge in research in the field of quantum plasma is justified. 

Traditionally, there has been research in quantum effects in 

plasmas [7-9]. Recent studies by Haas [10], Shukla [11], 

Manfredi [12], Brodin, Marklund [13, 14], Eliasson [15], Misra 

[16], Chatterjee [17, 18], Ghosh [19, 20], Chandra [21-31], 

Roychoudhury [32], Sahu [33] have made major contributions 

in this field. Most of them have used the quantum 

hydrodynamic (QHD) model. The hydrodynamic model makes 

use of the fluid equations in studying the plasma considering it 

to be as a fluid. Quantum plasma is characterized by high 

density and low temperature, in contrast to the classical plasma. 

What distinguishes quantum plasma from its classical 

counterpart is the coupling parameter. The coupling parameter 

is defined as the ratio of the potential to the kinetic energy. For 

both classical and quantum Coulomb systems, the mean 

interaction energy Upot is the same and is given by 
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But the mean kinetic energies differ. In the classical and 

quantum case they are given as:  
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Here TF is the Fermi temperature given by: 
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The classical and quantum coupling parameters are given by: 
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The above equations show that the classical weakly coupled 

plasma are generally dilute whereas the quantum weakly 

coupled plasma are found to be dense. Whether a system is 

classical or quantum is determined by the degeneracy 

parameter, FT T   and accordingly the Wigner formulation 

or the Vlasov formulation is used. The Wigner-Poisson (WP) 

formulation and Schrodinger-Poisson (SP) formulation
 
are some 

of the mathematical models describing the properties of 

quantum plasma. The WP model is often used in the study of 

quantum kinetic behavior of plasma whereas the SP model 

describes the hydrodynamic behavior of plasma particles in 

quantum scales. 
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In early years of plasma physics, it was found that rewriting 

the non-linear quantum-like equation in the form of 

hydrodynamical equation can help in better physical 

understanding of it. The hydrodynamic equations essentially 

represent the densities and momentum evaluation of quantum 

particles. Bohm [7-9, 34, 35] and Madelung [36] carried out an 

elegant treatment by introducing an eikonal representation for 

the wave function evolution in the non-stationary Schrödinger 

equations. The quantum electron fluid equations were derived 

for the Klein-Gordon equations [37] and for the Dirac equation

  s [38, 39] to incorporate quantum fluid formalism. The 

Madelung equations for quantum fluid are derived by [40, 41]. 

So far everybody has used the QHD model for extremely 

low temperatures. But in many cases such quantum effects are 

found with a finite temperature. Therefore, the formalism 

should be accordingly changed. A new model for non-linear 

quantum fluid equations at a finite temperature was given by 

Eliasson and Shukla [15]. This model, under specific limiting 

conditions of high and low temperature, converges to the 

regular equations. The model is explained in section 2 of the 

present paper. In this paper we have investigated arbitrary 

amplitudes Ion acoustic solitary structures. For small amplitude 

waves, the reductive perturbation technique (RBT) is generally 

used. But when the amplitude becomes large, this treatment is 

not valid. So some other mathematical method is to be used. 

The pseudopotential method of Sagdeev is one such approach. 

The paper is organized in the following way. In section two 

the finite temperature model is introduced. Section three deals 

with the basic hydrodynamic model equations and derives the 

expression for Sagdeev’s pseudopotential well. The next section 

is devoted to the study of solitary structures. Finally we discuss 

our results and come to a conclusion. 

 

II. THE FINITE TEMPERATURE 

MODEL 

We have based our mathematical model on a three-

dimensional equilibrium state in which nonlinear plane electron 

plasma waves are propagating. For spin ½-particles i.e., 

Fermions, the 3D Fermi-Dirac equilibrium state is given by [42] 
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where m is the electron mass,  is Planck’s constant divided by 

2π, β = 1/kBTe0, kB is the Boltzmann constant, Te0 is the 

background temperature, µ is the chemical potential and Liν(ξ) 

is the polylo
F garithm function [43, 44].   3 / 2 / 2  . 

Equation (7) gives the dependence of the equilibrium chemical 

potential µ on the temperature parameter β and on the 

equilibrium number density n0. When, that is, in the limit of 

electron temperature, we have 
F   (is the Fermi energy). 

Thus, we have from equation (7) 
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In plasmas which are free from collisions, plane 

longitudinal waves lead to adiabatic compression along one 

dimension only, and the plasma is heated adiabatically only in 

the velocity dimension along the wave propagation direction. 

This leads to temperature anisotropy of the electron distribution 

that varies with the wave motion. The phase fluid is 

incompressible in phase space in a classical Vlasov picture, and 

the Vlasov equation can be written as df /dt = 0, showing that 

the distribution function f does not change its value along the 

particle trajectories. In a quantum picture, using the Wigner 

equation, the incompressibility of f is violated by quantum 

tunneling, but it can be assumed that the incompressibility of 

the electron phase fluid is true to first order. Now, based on 

these assumptions, we consider a non-equilibrium particle 

distribution function of the form 
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where δ is a normalization constant, vex(x, t) is the mean 

velocity of the particles, and η(x, t) = Te0/Tex(x, t) gives the 

temperature anisotropy of the distribution function (which is to 

be determined self-consistently from the number density 

variations). As a first approximation, it can be assumed that the 

chemical potential μ does not change during the non-

equilibrium dynamics of the plasma. For a constant value of μ, 

it is seen from equation (10) that though f is deformed in phase 

space, its amplitude remains unchanged. The maximum value of 

f is always fmax = δ/ [exp (−βμ) + 1]. Normalizing f such that its 

integral over velocity space equals n0 at equilibrium when η=1 

and vex =0, we have 
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Comparing equation (11) with equation (7), we have δ = 2 

(m/2π  ) 3. Now in order to prepare for our fluid treatment, we 

have calculated the zeroth, first and second moments of the 

distribution function f and they are given by: 
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or 2

0 e( , ) [ / ( , )] ,x t n n x t  which gives the temperature 

anisotropy as a function of the number density variations, 
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where equations (11) and (12) have been used in the last step for 

δ and η respectively, and we have put  5 / 2 3 / 4  . 

Restricting to spatial dependence only along the x-direction, the 

Wigner equation gives 
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where the Poisson equation has been used to determine the 

electrostatic potential ϕ 
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The Wigner equation (15) converges to the Vlasov equation in 

the classical limit 0 , and in the present case it is given by  
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The zeroth and first moments of the Wigner equation are given 

respectively by 
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Here, equation (14) gives the expression of
2

xv , using which 

we have  
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where vTe = (kBTe/m)1/2 is the electron thermal speed, and where 

we have introduced an electron degeneracy parameter G defined 

as  
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It is an important parameter for the transition between the ultra-

cold and the thermal cases. Using (18), we can rewrite equation 

(20) as 
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That the plane wave propagation is essentially one-dimensional, 

with propagation along a single dimension and without energy 

exchange in other dimensions [15], is reflected by the exponent 

γ = 3 on the electron number density. This can be verified by 

putting D = 1 in the relation γ = (D+2)/D.  It can be seen that 

equations (7) and (8) imply that 
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which can be used to find μ for different values of β and F . 

Figure 1 shows the variation of G with β F . For β F  1, we 

get F   and F2 / 5G  , and for β F →0, we get 
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μ→−∞ and G → 1. For β
F 


 2, it is a good approximation to 

use the formula G  1 + (1/3 2 ) (β
F ) 3/2. This is obtained 

by a small argument approximation 2Li ( ) / 2      of the 

polylogarithm function. 

We note that in the absence of quantum diffraction effects, 

the zeroth and first moments of the Wigner equation (15) 

produce the same result as taking the zeroth and first moments 

of the Vlasov equation (17). So the formalism used here to 

derive the quantum field equations does not produce, in 

equation (22), the quantum diffraction term (Bohm-potential). 

This potential, however, can be included if we carefully 

consider the quantum diffraction effects as was done in the 1D, 

non-linear case by using a multi-stream model[15] and in the 

3D, linear case by using a series of canonical transformations of 

the Hamiltonian[15]. We have assumed that the Bohm potential 

depends only on the mean distance between particles, and is 

independent of the thermal fluctuations in a finite temperature 

plasma (which is justified in our case), and thus we may 

postulate, without mathematical rigor, that the continuity and 

momentum equations for the electrons and ions take the form 

e .( ) 0e e

n
n

t


 


v               (24) 

and  

3
2 2

2e 0 Te e

e e e

e 0 e e e

1
0

2

n v n e
G n

t n n m m n


  
                 

v
v v

          (25) 

respectively. The same for ions are given by  
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accordingly.  

The last term in the L.H.S. of each of the equations 

(25) and (27) is the nonlinear quantum diffraction force.
 Applying closure property, we use the Poisson equation to close 

the system: 
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III. BASIC EQUATIONS 

Our system contains homogeneous and unmagnetised 

electron-ion quantum plasma. In quantum plasma the effect of 

ion temperature on the ion acoustic wave (IAW) is studied by 

assuming the electrons to be inertialess & the ions are taken to 

be inertial. The phase velocity of the wave is taken to be 

/Fi FeV k V   (where VFi and VFe are the Fermi 

velocities of ions and electrons respectively). Ion pressure 

effects due to ion Fermi temperature can therefore be ignored. 

The 1-D basic dynamic equations in the unnormalised form, 

ignoring the non-linear mechanisms of ion acoustic waves in 

quantum plasmas obtained from section two (The finite 

temperature Fermi plasma model) and neglecting quantum 

diffraction effects for ions, are given as; 

 
0

e ee
n vn

t x


 

 
              (29) 

 
0

i ii
n vn

t x


 

 
              (30) 

23 22
2

0 Te e

2

e 0

0
2

e

e e e

n
n v ne h x

G
m x n x n xm n

 
   

  
  

 
  
  

    
 

             (31) 

1

i i i

i i

i

v v ne
v n

t x m x x




  
   

   
                                    (32) 

2

2
4 ( )i ee n n

x





  


                                     (33) 

Here nj, vj, mj, −e are the density, velocity field, mass, and 

charge, respectively where j =e, i stands for electrons and ions.  

Meanwhile, ħ=h/2π is the reduced Planck constant, ϕ is the 

electrostatic wave potential,  pe  is the electron pressure, and 

 1 3 /Ei FeT T   is the ion-to-electron Fermi Temperature ratio, 

where TFj is the Fermi temperature of the jth species. At 

equilibrium, we have ni0=ne0=n0.  We also assume that the ions 

behave as a one dimensional Fermi gas at zero temperature and 

therefore the pressure law [45] is: 
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where mi is the mass of ions; FiV 2 /B Fi ik T m  is the Fermi 

thermal speed, TFi is the Fermi temperature and kB is the 
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Boltzmann constant; ni is the number density with the 

equilibrium value ni0 .Now using the following normalization
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normalized set of equations; 

 

 
0

e ee
n vn

t x


 

 
              (35) 

 
0

i ii
n vn

t x


 

 
      

                                                

(36) 

2
2 2

2

1
0 3

2

e e
e

e

n H n
G n

xx x x n


  
    

     

               (37)  

1

i i i

i i

v v n
v n

t x x x


  
   

                                  

             (38) 

2

2
( )i en n

x


 

                                             

             (39) 

in which 2

04 /e e en e m  is the plasma frequency, 

2 /s B Fe ec k T m is the quantum ion-acoustic speed. H is the 

non-dimensional quantum diffraction parameter defined as

/ 2ec B FehH k T  , where TFe is the Fermi temperatures for 

electrons. 

In order to get localized stationary solution, let us assume 

that all dependent variables are functions of single independent 

variable:  
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where M is the Mach number defined by v/cs, v is the velocity 

of the nonlinear waveform moving with the frame. 

By integrating (37) once and applying boundary conditions 
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From the ion continuity equation (36) and ion momentum 

equation (38) with proper boundary conditions 

0, 0, 1 asi iv n       we obtain: 
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Substituting equation (42) in (43) we get, 
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Now by employing quasi-neutrality conditions
 i en n n    (45) 

and also substituting z n , from equations (41-44) we obtain  
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Multiplying both sides of equation (46) by dz d  and 

integrating with the boundary condition " 0n   and ' 0n   

and 0n , (where primes represent derivatives with respect to 

ξ) we obtain the nonlinear differential equation in terms of 

density as: 

1
( ) 0

2

dn
u n

d

 
  

 
               (47) 

where, the Sagdeev’s pseudopotential is defined as equation:   
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(48) 

Equation (48) is called the energy integral of an oscillatory 

particle of mass unity moving with a velocity 'n dn d   at 

position n in a potential well U(n).  It has quite similar 

expression as found by Chatterjee et al. [46]. If the ion 

temperature is neglected the equation (48) agrees with equation 

(19) in the article investigated by Mahmood & Mustaque [47]. 

The dependence of the pseudopotential U(n) on electron 

degeneracy parameter (G), quantum diffraction parameter (H), 

ion-to-electron Fermi temperature ratio (σ) and Mach number 

(M) is shown in figures 1-4. In figure 1, it is found that with 

increasing value of G, the dip of the pseudopotential well 

increases (i.e. it becomes more negative). Figure 2 shows the 

dependence of U(n) on quantum diffraction parameter H. The 
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potential well becomes less deep. The value of one of the roots, 

nm, lies between n = 0.6 to 0.7. From 0 to nm, the slope of the 

pseudopotential curve is less.  

Fig. 1: U (n) is plotted vs. n for different values of electron 

degeneracy parameter G; other parameters are M=0.6, H=4 

and σ=0.2. 

 

Fig. 2: U (n) is plotted vs. n for different values of Quantum 

diffraction parameter H; other parameters are M=0.6, 

G=100 and σ=0.2. 

 

Figure 3 depicts the dependence of U(n) on ion-to-electron 

Fermi temperature ratio σ. It is found that with the increasing 

value of σ, the potential well becomes slightly deeper. The 

dependence on Mach number is shown in figure 4. It only 

changes the value of nm. 

 

Fig. 3: U (n) is plotted vs. n for different values of ion-to-

electron temperature ratio σ; other parameters are M=0.6, 

G=100 and H=4. 

Fig. 4: U (n) is plotted vs. n for different values of Mach 

number M; other parameters are σ =0.2, G=100 and H=4. 

 

IV. SOLITARY WAVE SOLUTIONS 

Equation (48) describes the Sagdeev’s pseudopotential well 

U(n), in which the particle’s motion is executed, as a function of 

n. The characteristics of the pseudopotential U(n) will then 

decide the conditions for the existence of solitary wave solution. 

If it is found that between any two roots (in this case, 0 and nm) 

of the pseudopotential, U(n) is negative, then an oscillatory 

wave is found. On the contrary, if in the interval one root is a 

single root and another is a double root, then a solitary wave can 

be predicted. If both the roots are double root, then a double 

layer exists. The initial conditions are chosen such that the 
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double root appears at n=1. Therefore it takes an infinitely long 

time to get away from it and n reaches a minimum at nm, then 

again taking infinitely long time to return to n=0. Hence, the 

conditions for the existence of soliton solution are the 

following: 

a)   0U n   at n=1 and n=nm           (49a)

    

b) 
 

0
dU n

dn
  at n=1 but 

 
0

dU n

dn
 at mn n       (49b) 

c) 
 2

2
0

d U n

dn
   at n=1             (49c) 

If nm is less than one then rarefractive solitary wave 

structures are formed. On the other hand if it is greater than 

unity, then compressive structures are obtained. It is to be noted 

that complex U(n) is not physically allowed as it would imply 

complex density which is not physical. From equation (48), it is 

seen that the shape of the solitary structures can be determined 

from the following relation: 

 2
m

n

n

dn

U n
  


   

              

(50) 

Figures 5-8 show the solitary profile structures with 

variations in G, H, σ and M. In figure 5, it is clearly depicted 

that as G increases, the width of the soliton decreases and its 

amplitude increases.  

 

Fig. 5: n is plotted vs. ξ with variation of electron 

degeneracy parameter G. The blue curve denotes G=100, 

the red curve denotes G=1000, the black curve denotes 

G=10000; other parameters are M=0.6, H=2 and σ=0.2. 

 

Fig. 6: n is plotted vs. ξ with variation of quantum 

diffraction parameter H. The blue curve denotes H=2, the 

red curve denotes H=4, the black curve denotes H=6. Other 

parameters are M=0.6, G=100 and σ=0.2. 

 

 

Fig. 7: n is plotted vs. ξ with variation of ion-to-electron 

temperature ratio σ. The blue curve denotes σ =0.2, the red 

curve denotes σ =0.4, the black curve denotes σ =0.6; other 

parameters are M=0.6, H=2 and G=100. 

On the contrary, as quantum diffraction effects become 

more prominent, the solitons become wider but there is no 

significant effect on the amplitude (figure 6). In figure 7, it is 

found that as the value of ion-to-electron Fermi temperature 

ratio increases, the amplitude increases and the width decreases, 
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which is directly opposite to the effect of electron degeneracy 

parameter (G). Finally figure 8 shows that the change in Mach 

number has a very small effect on the properties of ion acoustic 

solitons; the width decreases slightly but the amplitude remains 

constant. 

 

Fig. 8: n is plotted vs. ξ with variation of Mach number M. 

The blue curve denotes M = 0.4, the red curve denotes M 

=0.5, the black curve denotes M =0.6; other parameters are 

σ =0.2, G=100 and H=2. 

 

V. CONCLUSION & REMARKS 

The paper reports on the formation and properties of large 

amplitude ion acoustic solitary structures in finite temperature 

degenerate Fermi plasma by employing Sagdeev’s 

pseudopotential approach. The effects of electron degeneracy 

parameter (G), quantum diffraction parameter (H), ion-to-

electron Fermi temperature ratio (σ) and Mach number (M) are 

studied with great detail. The results obtained here are important 

in further studies of quantum plasma at non-zero temperature.  
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